Unit G485: Fields, Particles and Frontiers of Physics

	T1
Define Electric Field Strength	Electric field strength at a point in space is the force per unit (positive) charge
Define Magnetic Flux Density	a measure of the strength of a magnetic field at a given point, expressed by the force per unit length on a conductor carrying unit current at that point. F=BQv
Define Tesla	One Tesla is the uniform magnetic flux density which, acting normally to a long straight wire carrying a current of 1 ampere, causes a force per unit length of $1nm^{-1}$ on the conductor
Define Magnetic flux	magnetic flux = magnetic flux density x (cross-sectional) area (perpendicular to field direction) B x A (normal to B). Magnetic flux=magnetic field x Area
Define The Weber	One Weber is equal to one Tesla metre ²
Define Magnetic Flux Linkage	The change of magnetic flux linkage is equal to the product of the change in magnetic flux and the number of turns N of a conductor involved in the change in flux
Define Capacitance	Capacitance = charge per (unit) potential differences Ratio of charge to potential for a conductor
Define The Farad	coulomb <u>per</u> (unit) volt
Define The Time Constant of a Circuit	Time for the charge to have decreased to $\frac{1}{e}$ of its initial charge
Define Proton Number	The number of protons found in the nucleus of an atom
Define Nucleon Number	The mass number, the sum of the number of neutrons and protons in an atomic nucleus
Define Isotopes	Isotopes are different forms of the same element which have the same number of protons but different numbers of neutrons in their nuclei
Define Activity (Radioactivity)	Spontaneous emission of a stream of particles or electromagnetic rays in nuclear decay
Define The Decay Constant	The probability of decay of a <u>nucleus per</u> unit time Reciprocal of decay time
Define Half Life	The half-life of a radioactive nuclide is the time taken for the number of un-decayed nuclei to be reduced to half its original number
Define Binding Energy	The energy equivalent of the mass defect of a nucleus. It is the energy required to separate to infinity all the nucleons of a nucleus
Define Binding Energy Per Nucleon	Binding energy per nucleon is defined as the total (minimum) energy needed to completely separate all the nucleons / protons <u>and</u> neutrons in a nucleus divided by the number of nucleons in the nucleus
Define Intensity	Power per unit area(W/m ²)
Define The Distance Measured In Astronomical Units (AU)	The astronomical unit is defined as the radius of the circular path round the sun followed by a body in 365.25 days
Define The Distance Measured In Parsecs (pc)	Distance from a base length of 1 AU that subtends an angle of 1 (arc) second
Define The Distance Measured In Light-Years (ly)	The distance travelled by electromagnetic radiation (light) in one year

Define Critical Density	The density shave which it is believed the expension of
Define Critical Density	The density above which it is believed the expansion of the universe will slow down and reverse
State that electric fields are	Electric charges exert forces on each other when they are
created by electric charges	a distant apart. An electric field is a region of space where
created by electric charges	• • •
State and use Eleming's left	a stationary charge experiences a force
State and use Fleming's left-	If the first two fingers and thumb of the left hands are
hand rule to determine the force	placed at right angles then the first finger is in the
on a current conductor places at	direction of the field, the second in the direction of the
right angles to a magnetic field.	current and the thumb in the direction of motion
State and use Faradays Law of	Induced e.m.f is proportional to <u>the rate</u> of change of
electromagnetic induction	(magnetic) flux
State and use Lenz's law	The direction of the induced e.m.f is such as to cause
Otata and use the second in far	effects to oppose the change producing it
State and use the equation for	$C = C_1 + C_2 + C_3 + \cdots$
the total capacitance of two or	
more capacitors in parallel	
State and use the equation for	$\frac{1}{c_T} = \frac{1}{c_1} + \frac{1}{c_2} + \frac{1}{c_3} + \cdots$ for two capacitors in series you can
the total capacitance of two or	use the equation $C = C_1 \cdot C_2$
more capacitors in series	use the equation $c = \frac{1}{c_1 + c_2}$
State and use the notation ${}^{A}_{Z}X$	use the equation $C = \frac{C_1 \cdot C_2}{C_1 + C_2}$ $\frac{A}{Z}X = \frac{nucleon number}{Proton number}X$
for the representation of	
nuclides	
State the quantities conserved	The charge, the total number of neutrons and protons,
in a nuclear decay	total energy, the total momentum of the system and the
	total lepton number.
State that there are two types of	3 decay
State that (electron) neutrinos	β^- decay plus antineutrino
and (electron) antineutrinos are	β^+ decay plus neutrino
produced during β^+ and β^-	
decays respectively	
State that a β^- particle is an elec	tron and a β^+ particle is a positron
State that electrons and neutrinos	s are members of a group of particles known as leptons
State the approximate	$3.1 \times 10^{16} m$
magnitudes in meters of the	
parsec	
State the approximate value in	$10 \times 10^{15} m$
meters of the light-year	
State Olbers' paradox	Based on: the universe being static / homogeneous and
	infinite / infinite number of stars
State and interpret Hubble's law	The speed of recession of a <u>galaxy</u> is proportional to its
·	distance (from Earth / observer)
State the cosmological principle	Universe is isotropic /same in all directions
	Homogeneous / evenly distributed
Explain the offect of a uniform	If E is uniform, then the acceleration of the charged
Explain the effect of a uniform	•
electric field on the motion of a	particle is constant. If the particle has a positive charge, then its acceleration is in the direction of the electric field.
charged particle	
	If the particle has negative charge, then its acceleration is
Explain the use of deflection of	in the direction opposite the electric field
Explain the use of deflection of	Depending on the strength of the magnetic and electric
charged particles in the magnetic and electric fields of a	fields the mass of charged [articles detected can be
	changed. E.g: the smaller the electric field the larger
•	• •
mass spectrometer	massed particles can be detected ential difference against charge graph is equal to the

anarray stored by a capacitor	
energy stored by a capacitor Explain exponential decays as having a constant ratio property	
	eutrons contain charged constituents called quarks they are
therefore not fundamental particle	
Explain how soft tissues like the	In order to make soft tissue more visible, contrast media,
intestines can be images using	such as barium, are used. The patient swallows a liquid
barium meal	rich in barium as it will readily absorb X-rays. The barium
	meal coats the wall of the tract enabling its outline to be
	seen in X-rays.
Explain what is meant by the	Doppler effect is a change in frequency and wavelength
Doppler effect	of a wave. It is caused by the change in distance between
	the thing creating the wave and whatever is measuring,
	seeing or hearing the wave.
Explain qualitatively how the	Doppler effect uses ultrasound waves. Sound waves are
Doppler effect can be used to	reflected by the moving blood cells. Change in
determine the speed of blood	frequency/wavelength enables the speed of blood flow or
Explain how ultrasound	rate of flow of blood to be found Transducer is the name given to any device that converts
transducers emit and receive	energy from one form to another. In this case electrical
high frequency sound	energy is converted into ultrasound energy by means of a
lingh hoquonoy count	piezo-electric crystal such as a quartz
Explain that the standard model	galaxies are moving apart / universe is expanding
of the universe implies a finite	if galaxies have always been moving apart then at some
age for the universe (hot big	stage they must have been closer together / or started
bang)	from a point
	evidence in red shift either optical / microwave
	further away the galaxy the faster the speed of recession the guidence of $a_1(2,7,16)$ microways
	the existence of a (2.7 K) <u>microwave</u> background radiation
	there is more helium in the universe than expected
Explain that the universe can be	Open: Universe expands for all time
'open', 'flat' or 'closed',	Flat: expands to a limit (but never reaches it)
depending on its density	Closed: Universe contracts / collapses back
Explain that the ultimate fate of	if average density of the Universe is less than critical then
the universe depends on its	it will be too small to stop it expanding / it goes on forever
density	if the average density of the Universe is greater than the
	critical value it will cause the contraction (and produce a
	big crunch)
	close to critical value and therefore a universe expands
	that will go towards a limit / expands at an ever
	decreasing rate asymptotic
Explain that it is currently	$ \rho_0 = \frac{3H_0^2}{8\pi G} $ Estimates give values of 1 or 2 orders of
believed that the density of the universe is close to, and	magnitude less than critical. But rotation of galaxies show
possibly exactly equal to, the	they have more mass than we can see, and the
critical density needed for a 'flat'	inflationary expansion theory suggests that the density is
cosmology	exactly equal to critical
Describe the difference	A-scan in one direction only / range or distance or depth
between A-scan and B-scan	finding
	B-scan uses a number of sensors or a sensor in different
	positions / angles (to build up a 2D/3D image)
Describe the importance of	The greater the mismatch, the more ultrasound is
impedance matching	reflected
Describe the principle contents	There are at least 10^{10} galaxies in the universe. From a

of the universe, including stars, galaxies and radiation	side view there is a disc shaped conglomeration of stars with a bulging central nucleus
Describe the solar system in	Solar system contains 9 well known planets and their
terms of the Sun, planets,	satellites; it also contains a number of small or dwarf
planetary satellites and comets	planets. These planets all orbit the sun. Comets have an
····· · · · · · · · · · · · · · · · ·	elliptical orbit, which means that they return regularly
	often passing close enough to the earth to be visible
Describe the formation of a star,	Gas / dust (cloud) / nebula / (hydrogen) gas drawn
such as our Sun, from	together by gravitational forces
	• • •
interstellar dust and gas.	<u>Gravitational</u> collapse
	Temperature of (dust) cloud increases / KE (of cloud)
	increases / (cloud) heats up (Loss in (gravitational) PE /
	KE increases / PE changes KE / temperature increase)
	Fusion occurs (when temperature is about 10'K
	Protons / hydrogen nuclei combine to make helium
	(nuclei) (Fusion of protons / hydrogen <u>nuclei</u>
	(produces helium nuclei and energy))
	Stable sized star is produced when thermal / radiation
	pressure is equal to gravitational pressure
Describe the Sun's probable	When hydrogen runs out the <u>outer layers</u> of the star
evolution into a red giant and	expands / <u>core</u> shrinks
white dwarf	<u>Red giant formed / eventually (the core becomes) a white</u>
white uwan	
	dwarf
	[A white dwarf is:
	A very dense star
	Hot star / high surface temperature / low luminosity
	No fusion reactions take place / leaks away photons (from
	earlier fusion reactions)
	Its collapse is prevented by Fermi pressure / mass less
	than 1.4 solar masses]
Describe how a star much more	(When hydrogen / helium runs out) the outer layers of the
massive than our Sun will	start expands / a (super) red giant is formed
evolve into a super red giant	The core (of the star) collapses (rapidly) / a supernova is
and then either a neutron star or	formed
black hole.	(Depending on the initial mass of the star, a supernova is)
	followed by neutron star / black hole
	,
Describe and interpret Hubble's	Observations that the wavelengths of identifiable spectral
red shift observations	lines in the spectra of light from distant galaxies did not
	correspond with wavelength measured on earth. Column
	of light seemed to be shifted towards the red end of the
	spectrum. This was interpreted as a continuous
	expansion of the universe
Describe and explain the	Leftover radiation (stretched over time) from events in the
significance of the 3K	Big Bang.
microwave background	
radiation	
Describe qualitatively the	(At the start it was) very hot / extremely dense / singularity
evolution of universe $10^{-43}s$	All forces were unified
after the big bang to the present	Expansion led to cooling
	Quarks / leptons soup
	More matter than antimatter
1	
	Quarks combine to form hadrons / protons / neutrons
	Quarks combine to form hadrons / protons / neutrons Imbalance of neutrons and protons / (primordial) helium

	produced.
	Atoms formed
	Ideas of gravitational force responsible for formation of
	stars / galaxies
	Temperature becomes 2.7K / 3K or (the Universe is
Describe how cleatric field lines	saturated with cosmic) microwave background radiation The direction of the electric field is defined as the
Describe how electric field lines	
represent an electric field	direction in which a positive charge would move if it were free to do so. So the lines of force can be drawn with
Describe the similarities and	arrows that go from positive to negative
differences between the	
gravitational fields of point	
masses and the electric fields of	
point charges	
Describe the magnetic field	Magnetic field patterns due to a long straight wire are
patterns of a long straight	concentric circles centred on the middle of the wire. The
current-carrying conductor and	separation of the line increases with distance from the
a long solenoid	wire.
	A solenoid may be thought to be made up of many flat
	coils placed side by side. The field lines are parallel and
	equally spaced over the centre section of the solenoid
	indicating the field is uniform
Describe the function of a	An electric generator converts mechanical energy in the
simple ac generator	form of the rotation energy of a coil of wire into electrical
	energy
Describe the function of a	A simple transformer is two coil of insulated wire wound
simple transformer	on to a laminated soft iron core. And alternating e.m.f is
	applied across the primary coil and an e.m.f is induced in
	the secondary
	Secondary
	Isecondary
	Primary
	Iprimary
	Vs Vs
	Vp
	Ns
Dependent the function of star and	Np
Describe the function of step-up	Step up- when V_s is greater than V_p there are more turns
and step-down transformers	in the secondary coil than the primary. Low to high
	voltage
	Step down- when V_s is less than V_p there are more turns in
	the primary coil than the secondary. High to low voltage
Describe the uses of capacitors	Capacitor takes a few seconds to charge then it is either
for the storage of energy in	discharged rapidly when connected to the flash bulb to
applications such as flash	give a short but intense flash, or it can be released slowly,
photography, lasers used in	when being used as a back up battery
nuclear fusion and as back-up	
power supplies for computers Describe qualitatively the alpha-	a partiala apattaring
particle scattering experiment	α - particle scattering
and the evidence this provides	suitable diagram with source, foil, moveable detector

for the order of the	
for the existence, charge and small size of the nucleus	2 or more trajectories shown
small size of the nucleus	vacuum
	most particles have little if any deflection
	large deflection of very few
	reference to Coulomb's law /elastic scattering
	alphas repelled by nucleus (positive charges)
	monoenergetic
	OR electron scattering
	High energy diagram with source sample, moveable
	detector / film
	Vacuum
	Electron accelerator or other detail
	Most have zero deflection
	Characteristic angular distribution with minimum
	Minimum not zero
	De Broglie wavelength
	Wavelength comparable to nuclear size hence high
	energy
Describe the basic atomic	Protons are in the nucleus they have a mass u and
structure of the atom and the	charge +e
relative sizes of the atom and	Neutrons are also in the nucleus they do not have a
the nucleus	charge and have a mass u Electrons orbit the nucleus and have mass u/2000 and a
	charge -e
Describe how the strong	Due to a strong force that binds quarks together to form
nuclear force between nucleons	neutrons and protons. Must be short range as it does not
is attractive and very short-	influence beyond the nuclear surface and strong enough
ranged	to overcome the repulsive force of the protons.
Describe a simple quark model	There are three quarks with corresponding antiquarks.
of hadrons in terms of up, down	They have a fractional charge of either 1 or 2 thirds.
and strange quarks and their	Baryons are made up of three quarks
respective antiquarks, taking	Mesons are small and made of a quark and antiquark
into account their charge,	
baryon number and	
strangeness. Describe how the quark model	3 more guarks called charmed, bottom and top.
may be extended to include the	Charmed quarks have a charge +2e/3 and a baryon
properties of charm topness	number of 1/3
and bottomness	Bottom quarks have a charge of $-e/3$ and a baryon
	number of 1/3
	Top quarks have a charge of +we/3 and a baryon number
	of 1/3
Describe the properties of	Neutrons- No charge, mass u, made of 1 up and 2 down
neutrons and protons in terms	quarks
of a simple quark model	Protons-+1 charge, mass u, made of 2 up and 1 down quark
Describe how there is weak	Because of weak interactions between quarks a down
interactions between quarks	quark is able to become an up quark turning a neutron
and that this is responsible for β	into a proton and emitting an electron
decay	
Describe the two types of β	β - decay a neutron turns into a proton and emits an
decay in terms of a simple	electron

	β + decay a proton turns into a neutron and a positron is
quark model	emitted
Describe the spontaneous and	Spontaneous: the decay cannot be induced / occurs
random nature of radioactive	without external influence
decay of unstable nuclei	Random: cannot predict when / which (nucleus) will
	decay next
Describe the nature, penetration	Alpha particles have a charge +2e and can travel through
and range of α particles, β	a few cm of air
particles and γ rays	Beta emissions has a charge of –e and can penetrate a
	few mm of aluminium
	Gamma rays have no charge and penetrate a few cm of
	lead
Describe the use of radioactive	Ionisation of air caused by a small alpha particle emitter
isotopes in smoke alarms	with a long half-life, the alpha particles pass between
	electrons producing a current. If there is more than a
	certain concentration of smoke alpha particles are
	absorbed and the current is then reduced, this then
	triggers the alarm
Describe the nature of x-rays	Electromagnetic waves
	Travel at speed of light / 3x10 ⁸ m/s (in a vacuum)
	Travel in a vacuum
	Can cause ionisation
	Wavelength about 10 ⁻¹⁰ m
	(X-rays are) high energy photons
Describe in simple terms how x-	Electrons are accelerated through high voltage
rays are produced	(High speed) electron(s) hit metal
Describe how x rove interact	Kinetic energy of electron(s) 'produces' X-ray (photons)
Describe how x-rays interact	_ بر
with matter (limited to the photoelectric effect, Compton	
effect and pair production)	
	X-ray photon
	Α
	× ×
	X Z
	× X z X
	Photoelectric Effect
	Photoelectric Effect
	Photoelectric Effect
	Photoelectric Effect scattered electron
	Photoelectric Effect Scattered electron X-ray photon
	Photoelectric Effect scattered electron X-ray photon (X-ray) photon interacts / collides with an (orbital) electron
	Photoelectric Effect Scattered electron X-ray photon

The electron is ejected (from the atom at high speed) electron (0.5MeV) VVVVVVVVVVVVVVV X-rav nhoton (>1 MeV) Pair Production Pair Production Incoming photon (disappear and) produces electron- positron pair. Incoming photon (disappear and) produces electron- positron pair. Intensifier used as X-ray would pass through film Intensifier converts X-ray photon to many visible (light) photons (which are absorbed by film) Lower exposure / fewer X-rays needed lodine / barium (used as contrast material) High Z number / large attenuation coefficient / large absorption coefficient / large atomic number (easily absorbs x-rays / used to improve image contrast) Contrast media are ingested / injected into the body.		i ne electron is ejected (from the atom at high speed)
Describe the use of x-rays in imaging internal body structures including the use of image intensifiers and of contrast media Incoming photon (disappear and) produces electron-positron pair. Incertifier used as X-ray would pass through film Intensifier converts X-ray photon to many visible (light) photons (which are absorbed by film) Lower exposure / fewer X-rays needed lodine / barium (used as contrast material) High Z number / large attenuation coefficient / large atomic number (easily absorbs x-rays / used to improve image contrast) Contrast media are ingested / injected into the body.		
 (>1 MeV) Pair Production Pair Production Incoming photon (disappear and) produces electron-positron pair. Describe the use of x-rays in imaging internal body structures including the use of image intensifiers and of contrast media Intensifier used as X-ray would pass through film Intensifier converts X-ray photon to many visible (light) photons (which are absorbed by film) Lower exposure / fewer X-rays needed lodine / barium (used as contrast material) High Z number / large attenuation coefficient / large absorption coefficient / large atomic number (easily absorbs x-rays / used to improve image contrast) Contrast media are ingested / injected into the body. 		electron (0.5MeV)
Incoming photon (disappear and) produces electron- positron pair.Describe the use of x-rays in imaging internal body structures including the use of image intensifiers and of contrast mediaIntensifier used as X-ray would pass through film Intensifier converts X-ray photon to many visible (light) photons (which are absorbed by film) Lower exposure / fewer X-rays needed Iodine / barium (used as contrast material) High Z number / large attenuation coefficient / large absorption coefficient / large atomic number (easily absorbs x-rays / used to improve image contrast) Contrast media are ingested / injected into the body.		(> 1 MeV)
Describe the use of x-rays in imaging internal body structures including the use of image intensifiers and of contrast mediaIntensifier used as X-ray would pass through film Intensifier converts X-ray photon to many visible (light) photons (which are absorbed by film) Lower exposure / fewer X-rays needed Iodine / barium (used as contrast material) High Z number / large attenuation coefficient / large absorption coefficient / large atomic number (easily absorbs x-rays / used to improve image contrast) Contrast media are ingested / injected into the body.		•••••••••••••••••••••••••••••••••••••••
Used to reveal tissues. Absorption of X-rays by (silver halide molecules) by a photographic film Uses of fluorescent / scintillator/ phosphor Photon releases electron (that is accelerated onto a fluorescent screen) number of electrons increased /multiplied Different soft body tissue produce little difference in contrast/attenuation (Contrast media with) high atomic number / Z used / iodine or barium (used to give greater contrast)	haging internal body structures cluding the use of image tensifiers and of contrast edia	Intensifier used as X-ray would pass through film Intensifier converts X-ray <u>photon</u> to many visible (light) <u>photons</u> (which are absorbed by film) Lower exposure / fewer X-rays needed Iodine / barium (used as contrast material) High Z number / large attenuation coefficient / large absorption coefficient / large atomic number (easily absorbs x-rays / used to improve image contrast) Contrast media are ingested / injected into the body. Used to reveal tissues. Absorption of X-rays by (silver halide molecules) by a photographic film Uses of fluorescent / scintillator/ phosphor Photon releases electron (that is accelerated onto a fluorescent screen) number of electrons increased /multiplied Different <u>soft</u> body <u>tissue</u> produce little difference in contrast/attenuation (Contrast media with) high atomic number / Z used /
computerised axial topography (CAT) scanner	omputerised axial topography CAT) scanner	
slices Advantages: X-ray image is 2D / CT scan produces 3D image	AT scan compared with an x-	single image Simple X-ray is one directional / produces single image Computer processes data / image constructed from many slices Advantages: X-ray image is 2D / CT scan produces 3D image
Greater detail / definition / contrast with CT scan / 'soft tissues can be seen'		tissues can be seen'
Image can be rotated Describe the use of medical Radioactive substance that is ingested / injected (into	escribe the use of medical	

notiont)
patient)
Technetium(-99) / lodine(-131)Tracer administered will be
giving off radiation so the path can be followed. It will not
interfere with any functions of the body. And it must emit
detectable radiation so that the image of the organs can be observed
Collimator – gamma (ray photons) travel along the axis of
lead tubes or allows parallel gamma (ray photons travel to
the scintillator)
Having thin / long / narrow (lead) tubes makes the image
sharper / less blurred
Scintillator – gamma ray photon produces many /
thousands of photons of (visible) light
Photomultiplier – An electrical pulse is / electrons are
produced from the light (photons)
Computer – signals (from photomultiplier tubes) are used
to produce an image
Uses radioactive substance / uses positron-emitting
substance / uses F(F-18)
Can reveal the 'function' of the brain. 3D
Strong electromagnet, radio frequency transmitting coils,
radio frequency receiving coils, gradient coils and a
computer.
Protons / nuclei have spin / behave like tiny magnets
Protons / nuclei precess about the magnetic field
(provided by the strong electromagnet)
Transmitting coild provide (pulses of) radio waves of
frequency equal to the Larmor frequency
The protons / nuclei absorb energy / radio waves /
resonate and flip into a higher energy state
When protons / nuclei flip back to a lower energy state
they emit (photons of) radio waves
The relaxation time of the (protons / nuclei) depends on
the (surrounding) tissues
The radio waves are picked up by the receiving coils
The gradient coils alter the magnetic flux density (through
the body)
The Larmor frequency (of the protons / nuclei) varies
throughout the body
The computer (processes all the signals from the
receiving coils and) generates the image
Advantage: not ionising radiation (as with X-rays) / better
soft tissue contrast Disadventage: besting effect of metal objects (effect on
Disadvantage: heating effect of metal objects /effect on
cardiac pacemakers / takes a long time to perform MRI
scan
Method does not use ionising radiation hence no radiation
hazard to patient or staff
Gives better soft tissue contrast than CT scans
Generates data from a 3D volume simultaneously
Information can be displayed on a screen as a section in
and align attack
any direction

	There is no sensation, after effects at the field strengths used for routine diagnosis
	Strong magnetic field could draw steel objects into the magnet
	Metallic objects may become heated
	Cardiac pacemakers may be affected by the magnetic
	fields
	CT scanners better for viewing bony structures
Describe the need for non	No entry into body / no cutting / incision of patient / no
invasive techniques in diagnosis Describe the properties of	surgery. Lower risk of infection / less trauma The gel allows maximum transmission of ultrasound (into
ultrasound	the body)
Describe the piezoelectric effect	The application of a p.d. across a material / crystal
	causes an expansion / contraction / vibration
Describe the principles of	Pulses of ultrasound (sent into the body)
ultrasound scanning	Wave / ultrasound / pulse / signal is reflected (at
	boundary of tissue)
	Time of delay used to determine depth / thickness
	The fraction of <u>reflected</u> signal is used to identify the tissue
	Small wavelength used which means finer detail can be
	seen / greater resolution
	Blood – Ultrasound is reflected by (moving) blood (cells)
	The frequency / wavelength (of ultrasound) is changed
	The change of frequency is related to speed of blood /
	change of wavelength is related to speed of blood /
	'frequency is proportional to speed of blood'
Describe the process of induced	The splitting of a heavy nucleus into two lighter nuclei of
nuclear fission	approximately the same mass
Describe the techniques of	Living plants / animals absorb carbon(-14)
radioactive dating	Once dead, the plant does not take in any more carbon(- 14)
	The fraction of C-14 to C-12 (nuclei) or number of C-14
	(nuclei) or activity of C-14 (nuclei) measured in dead <u>and</u>
	living (sample)
Departipe and explain the	x = x0 e- t used with data above to estimate the age
Describe and explain the process of nuclear chain	Occurs when one nuclear reaction causes an average of one of more nuclear reactions, thus leading to a self-
reaction	propagating series of reactions
	Controlled chain reaction: The control rods are inserted
	into the reactor so as to allow (on average) one neutron
	from previous reaction to cause subsequent fission.
Describe the basic construction	Fuel rods: contain the <u>uranium</u> (nuclei) / fissile material
of a fission reactor and explain	Control rods: Absorb (some of the) neutrons.
the role of the fuel rods, control	Moderator: Slows down the (fast moving) neutrons /
rods and the moderator	lowers the KE of (fast moving) neutrons / makes (fast
	moving) neutrons into thermal neutrons.
	Slow moving neutrons have a greater chance of causing
	fission / being absorbed (by U-235) / sustaining chain
	reaction
Describe the use of nuclear	Advantages-does not produce acid rain or waste gases

findion on on onergy source	which cause pollution
fission as an energy source	which cause pollution -provides energy for nuclear power and can provide electricity Disadvantages-problems with the reaction getting out of control
	-risks from radiation
	-long half life of waste
	-can be used to drive nuclear weapons
Describe the peaceful and	Peaceful-Create Energy
destructive uses of nuclear fission	Destructive-Nuclear Weapons
Describe the environmental	Nuclear waste is (radio)active for a long time
effects of nuclear waste	Causes ionisation
Describe the process of nuclear fusion	Joining / fusing together of ('lighter') nuclei / protons (to make 'heavier' nuclei.)
	Mass decreases in the reaction and this is transformed into energy OR the products have a greater binding
	energy.
	High temperature / approx. 10 ⁷ K needed for fusion
	High pressure / density (required in the core).
	The protons / nuclei repel (each other because of their positive charge)
	The strong (nuclear) force comes into play when the
	protons / nuclei are close to each other.
Describe the conditions in the	Fusion in the core of the sun: Protons / hydrogen <u>nuclei</u> to
core of stars	produce Helium <u>nuclei (positrons and neutrinos)</u>
	There is electrostatic repulsion (between the protons) /
	The protons repel (each other because of their positive charge)
	High temperatures / 107 K needed (for fusion
	(At high temperatures some of the fast moving) protons
	come close enough to each other for the strong (nu-clear)
	force (to overcome the electrostatic repulsion)
	High density / pressure (in the core of the Sun) There is a
	decrease in mass, hence energy is released / products
	have greater binding energy
Analyse the circular orbits of	Consider positively charged particle of mass m carrying
charged particles moving in a	charge q and moving with velocity v, when it enters the
plane perpendicular to a	magnetic field which is normal to the direction of motion of
uniform magnetic field by	the particle it will experience a force normal to its
relating the magnetic force to	direction. This does not affect speed but will change the
the centripetal acceleration it causes	direction of motion so the body moves in a circular motion
Analyse the motion of charged	The force on a particle of charge q moving at speed v and
particles in both electric and	an angle θ to a uniform magnetic field of flux density B is
magnetic fields	given by F=BqvSinθ